The nature of the electronic excited state of many symmetric multibranched donor–acceptor molecules varies from delocalized/multipolar to localized/dipolar depending on the environment. Solvent-driven localization breaks the symmetry and traps the exciton in one branch. Using a combination of ultrafast spectroscopies, we investigate how such excited-state symmetry breaking affects the photochemical reactivity of quadrupolar and octupolar A(-À-D)2,3 molecules with photoisomerizable A-À-D branches. Excited-state symmetry breaking is identified by monitoring several spectroscopic signatures of the multipolar delocalized exciton, including the S2â†S1 electronic transition, whose energy reflects interbranch coupling. It occurs in all but nonpolar solvents. In polar media, it is rapidly followed by an alkyne-allene isomerization of the excited branch. In nonpolar solvents, slow and reversible isomerization corresponding to chemically-driven symmetry breaking, is observed. These findings reveal that the photoreactivity of large conjugated molecules can be tuned by controlling the localization of the excitation.
  
The excited-state dynamics of a T-shaped bichromophoric molecule, consisting of two strong fluorophores, diphenyloxazole and diphenylpyrazoline, directly linked in an orthogonal geometry, was investigated. Despite the weak coupling ensured by this geometry and confirmed by the electronic absorption spectra, this dyad exhibits only weak fluorescence in both apolar and polar solvents, with fluorescence lifetimes ranging from 200 ps in CHX to 10 ps in ACN. Ultrafast spectroscopic measurements reveal that the fluorescence quenching in polar solvents is due to the population of a charge-separated state. In non-polar solvents, this process is energetically not feasible, and a quenching due to an efficient intersystem crossing (ISC) to the triplet manifold is proposed, based on quantum-chemical calculations. This process occurs via the spin–orbit charge-transfer (SOCT) ISC mechanism, which is enabled by the charge-transfer character acquired by the S1 state of the dyad upon structural relaxation and by the orthogonal arrangement of the molecular orbitals involved in the transition. The same mechanism is proposed to explain why the recombination of the charge-separated state is faster in medium than in highly polar solvents, as well as to account for the fast decay of the lowest triplet state to the ground state.
  • Direct Observation of a Photochemical Alkyne-Allene Reaction and of a Twisted and Rehybridized Intramolecular Charge-Transfer State in a Donor-Acceptor DyadOpen access paper
    B. Dereka, D. Svechkarev, A. Rosspeintner, M. Tromayer, R. Liska, A.M. Mohs and E. Vauthey
    Journal of the American Chemical Society, 139 (2017), p16885-16893
    DOI:10.1021/jacs.7b09591 | Abstract | Article HTML | Article PDF | Supporting Info
 
The excited-state dynamics of an aniline–triazine electron donor–acceptor dyad with an alkyne spacer has been investigated using a combination of ultrafast broadband mid-IR and visible transient absorption and fluorescence spectroscopies. The transient IR data reveal the occurrence of an efficient alkyne to allene isomerization of the spacer with a time constant increasing from a few hundreds of femtoseconds to a few picoseconds with solvent viscosity. This process is faster than the vibrational cooling of the Franck–Condon excited state, indicative of nonequilibrium dynamics. The transient electronic absorption and fluorescence data evidence that this transformation is accompanied by a charge separation between the donor and the acceptor subunits. The allene character of the spacer implies an orthogonal orientation of the donor and acceptor moieties, similar to that proposed for twisted intramolecular charge-transfer states. Such states are often invoked in the excited-state dynamics of donor–acceptor dyads, but their involvement could never be unambiguously evidenced spectroscopically. The alkyne–allene isomerization involves not only a torsional motion but also a bending of the molecule due to the sp to sp2 rehybridization of one of the alkyne carbon atoms. This twisted and rehybridized intramolecular charge transfer (“TRICTâ€) state decays back to the planar and linear alkyne ground state on a time scale decreasing from a few hundred to ten picoseconds upon going from weakly to highly polar solvents. The different solvent dependencies reveal that the dynamics of the allene buildup are controlled by the structural changes, whereas the decay is limited by the charge recombination step.
  
The electronic absorption spectrum of 3-hydroxyflavone (3HF) in various solvents exhibits a long-wavelength (LW) band, whose origin has been debated. The excited-state dynamics of neutral and basic solutions of 3HF in alcohols upon excitation in this LW band has been investigated using a combination of fluorescence up-conversion and transient electronic and vibrational absorption spectroscopies. The ensemble of results reveals that, in neutral solutions, LW excitation results in the population of two excited species with similar fluorescence spectra but very different lifetimes, namely 40–100 ps and 2–3 ns, depending on the solvent. In basic solutions, the relative concentrations of these species change considerably in favor of that with the short-lived excited state. On the basis of the spectroscopic data and quantum chemistry calculations, the short lifetime is attributed to the excited state of 3HF anion, whereas the long one is tentatively assigned to an excited hydrogen-bonded complex with the solvent. Excited-state intermolecular proton transfer from the solvent to the anion yielding the tautomeric form of 3HF is not operative, as the excited anion decays to the ground state via an efficient nonradiative transition.
  • Complementary Surface Second Harmonic Generation and Molecular Dynamics Investigation of the Orientation of Organic Dyes at a Liquid/Liquid Interface
    D. Svechkarev, D. Kolodezny, S. Mosquera-Vázquez and E. Vauthey
    Langmuir, 30 (46) (2014), p13869-13876
    DOI:10.1021/la503121g | unige:43539 | Abstract | Article HTML | Article PDF
 
The second-order nonlinear response of two dyes adsorbed at the dodecane/water interface was investigated by surface second harmonic generation (SSHG). These dyes consist of the same chromophoric unit, 2-pyridinyl-5-phenyloxazole, with an alkyl chain located at the two opposite ends. The analysis of the polarization dependence of the SSHG intensity as usually performed points to similar tilt angles of the two dyes with respect to the interface but does not give information on the absolute direction. Molecular dynamics (MD) simulations reveal that both dyes lie almost flat at the interface but have opposite orientations. A refined SSHG data analysis with the width of the orientational distribution yields tilt angles that are in very satisfactory agreement with the MD simulations.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024